L. P. Yuan (China National Hybrid Rice R & D Center)

Supe	r Rice	Breedi	ng Pro	gram
Yield s	standard o	of the Sup	er Rice ir	n China
Phase	Hybrid Rice			
	Early season indica	Single season rice	Late season indica	Yield increase
Present level	7.50	8.25	7.50	0
Phase I 1996- 2000	9.75	10.50	9.75	over 20%
Phase II 2001- 2005	11.25	12.00	11.25	over 40%
* Tons/ha at 2	locations with	6.7 ha each in	n 2 consecutiv	e years.

A. Morphological Improvement

Plant type of Super Hybrid Rice

- > Tall erect-leaf canopy
- Lower panicle position
- Bigger panicle size

Plant neight (cm)	Number of spikelets /panicle	Number of spikelets /plant	Seed setting rate %	Actual yield (kg/ha)
120	269.4	1779.4	54.0	8250
89	102.6	800.3	92.9	8625
34.8	162.8	122.4	-41.9	-4.3
	neight (cm) 120 89 34.8	spinceets /panicle 120 269.4 89 102.6 34.8 162.8	spikelets spikelets spikelets /panicle /plant 120 269.4 1779.4 89 102.6 800.3 34.8 162.8 122.4	splicetets splicetets splicetets splicetets splicetets rate rate splicetets rate splicetets splicetets rate splicetets rate splicetets splicetets rate splicetets splic

Conclusion

Accelerating the development of super hybrid rice worldwide will play a key role for food security and world peace.

